文章编号: 0253-2239(2010)04-0940-04

基于半导体光放大器的相位调制信号再生器

席丽霞¹ 谢扬戈² 唐先锋¹ 田 凤¹ 张晓光¹ (¹北京邮电大学信息光子学与光通信教育部重点实验室,北京 100876 ²北京邮电大学国际学院,北京 100876</sup>)

摘要 对相位调制光通信系统进行幅度和相位的同时再生十分必要。采用半导体光放大器(SOA)作为非线性媒介,搭建一个非线性的马赫-曾德尔干涉仪作为再生器,利用 SOA 的增益特性,在锁相本地振荡抽运源的驱动下,实现对相位调制信号的幅度和相位的同时再生。理论推导了入射光信号经过基于 SOA 的再生器后的光场分布公式;讨论了不同入射信号光功率下,抽运光与信号光的相位差对信号功率增益的影响,给出了入射光的最优参数; 数值仿真了带有噪声的相位调制信号再生前后的相位分布、强度分布和误码率。研究结果表明,基于 SOA 的光再 生器有良好的再生效果。

关键词 光通信;相位调制信号再生器;半导体光放大器 中图分类号 O436 **文献标识码** A **doi**: 10.3788/AOS20103004.0940

A Semiconductor Optical Amplifier Based Regenerator for Phase Modulated Signals

Xi Lixia¹ Xie Yangge² Tang Xianfeng¹ Tian Feng¹ Zhang Xiaoguang¹ ¹Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China ²International School, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract Amplification and simultaneous phase regeneration are necessary for phase modulated optical fiber communication system. In this paper, using semiconductor optical amplifier (SOA) as nonlinear medium, a nonlinear Mach-Zehnder interferometer (MZI) as the regenerator is designed. The formula of signal after the SOA based MZI regenerator is educed. For different incident power of signal, the relations between signal-pump phase difference and signal gain are discussed. The optimum parameters of input signal and pump are obtained. The distributions of phase and intensities for both the non-regenerated and regenerated signal are simulated. The results show that the SOA based optical regenerator has a good regeneration.

Key words optical communications; regenerator for phase modulated signals; semiconductor optical amplifier

1 引

言

在高速光通信系统中,差分相移键控(DPSK) 码和差分正交相移键控(DQPSK)码等相位调制格 式,因其优异的性能受到了广泛关注^[1~9],被认为是 很有发展前途的调制格式。对于相位调制光纤通信 系统,除了幅度抖动对它产生影响外,更主要的局限 来源于线性和非线性的相位噪声^[2,3]。实验证明, 当相位噪声中的非线性相位噪声占优势时,相位调 制信号平衡解调的接收灵敏度优势将会丧失。因此,实现相位调制信号幅度与相位的同时再生十分 重要^[3~10]。文献[6~9]是用基于高非线性光纤的 相位敏感放大器实现信号的相位再生。

考虑到半导体光放大器(SOA)的增益特性,本 文利用 SOA 和 50:50 耦合器搭建了一个马赫-曾德 尔干涉仪(MZI)型再生器,理论推导了入射光信号 经过再生器后的光场分布,讨论了不同入射信号光

作者简介: 席丽霞(1973-),女,博士,副教授,主要从事光通信系统信号损伤恢复方面的研究。E-mail: xilixia@263.net

收稿日期: 2009-08-02; 收到修改稿日期: 2009-09-29

基金项目:国家 863 计划(2009AA01Z224)资助课题。

功率下,抽运光与信号光的相位差对信号功率增益 的影响,对入射光参数进行了优化,数值模拟了相位 调制信号再生前后的相位分布、强度分布及误码率, 证明了再生器的再生效果。

理论推导 2

利用耦合器和 SOA 搭建一个马赫一曾德尔干 涉仪型再生器,如图1所示。

图 1 再生器结构示意图

在锁相本地振荡抽运源驱动下,实现对信号的 幅度及相位的同时再生。理论推导如下:

首先讨论 SOA 的传输特性。假设在 SOA 内 部,光场沿z轴方向传播,其传输方程满足

$$\frac{\partial E(z,t)}{\partial z} + \frac{1}{v_{g}} \frac{\partial E(z,t)}{\partial t} = \frac{1}{2} [\Gamma g(z,t)(1+i\alpha) - \alpha_{int}] E(z,t), \qquad (1)$$

式中 Γ 为与偏振相关的限制因子,文中取 $\Gamma=1$; g为增益系数,它是传输距离和时间的函数; α 为反 映振幅与相位耦合效应的线宽增强因子,一般商用 的 SOA 的 α 值为 4; α_{int} 为 SOA 内部的线性衰减因 子,在下面的计算中忽略不计;vg为群速度。

从(1)式可以看出:SOA 对在其内部传输的光 场不仅有幅度上的放大作用,而且还会对其进行相 位调制。对(1)式采用分步傅里叶积分的方法数值 上可以得到,在 SOA 内传播 L 距离时的光场分布、 净增益及附加相移,但计算比较复杂。在此,采用光 强的微分方程先计算出净增益。沿z轴方向传播的 光强满足以下微分方程

$$\frac{\mathrm{d}P(z)}{P(z)\mathrm{d}z} = \frac{g_0}{1 + \frac{P(z)}{P_{\mathrm{SAT}}}},\tag{2}$$

式中 P_{SAT} 为饱和光强,取决于SOA本身的特性,文 中取 $P_{SAT} = 1 \text{ mW}$; g₀ 为入射光功率很小时 SOA 的 增益系数,此处取 $g_0 = 10$ dB/mm。利用 Matlab 中 的 LAMBERTW 函数可以计算出传输 L 距离后的 光强

$$P(L) = P_{\text{SAT}} N_{\text{LAM}} \left\{ \frac{P(0)}{P_{\text{SAT}}} \exp\left[\frac{P(0)}{P_{\text{SAT}}} + g_0 L\right] \right\},$$
(3)

根据(3)式的结果可得到长度为L的SOA的 增益系数

$$g(L) = \ln[P(L)/P(0)], \qquad (4)$$

根据(1)式,并利用(4)式的结果可以计算出经 过长度为L的 SOA 后附加的相移,即

$$\Phi(L) = g(L)_{\alpha}, \tag{5}$$

下面推导经再生器后输出信号光的表达式。假 定信号光和抽运光具有相同的振动方向和频率,用 \vec{E}_{stc} 和 \vec{E}_{10} 分别表示输入的信号光和抽运光。考虑 到 50:50 的耦合器特性,经基于 SOA 的 MZI 后,输 出的信号光 *E*_{out}的表达式为

$$\vec{E}_{out} = \frac{\vec{E}_{LO}\left[\exp(g_2 + i\Phi_2) - \exp(g_1 + i\Phi_1)\right]}{2} + j\frac{\vec{E}_{SIG}\left[\exp(g_2 + i\Phi_2) + \exp(g_1 + i\Phi_1)\right]}{2}, \quad (6)$$

式中 g_1 和 ϕ_1 分别为经过SOA1后的增益及附加相 移, 且满足 $\Phi_1 = g_1 \alpha; g_2$ 和 Φ_2 则分别为经过 SOA2 后的增益及附加相移。经再生器后输出信号光功率 为

$$P_{\text{out}} = P_{\text{LO}} [\exp(2g_2) + \exp(2g_1) - 2\cos\Delta\Phi \cdot \\ \exp(g_2 + g_1)] + P_{\text{SIG}} [\exp(2g_2) + \\ \exp(2g_1) + 2\cos\Delta\Phi \exp(g_2 + g_1)] + \\ 2 \sqrt{P_{\text{IN}}P_{\text{LO}}} \{2\cos\delta\sin\Delta\Phi \exp(g_2 + g_1) + \\ 2 \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \\ \exp(g_2 + g_1) + \exp(g_2 + g_1) + \\ \exp$$

$$\operatorname{sin\delta}[\exp(2g_2) - \exp(2g_1)]\}, \qquad (7)$$

式中 $\Delta \Phi = \Phi_2 - \Phi_1$ 为经两臂上 SOA 后附加的相位差, $\delta = \Phi_{10} - \Phi_{SIG}$ 为入射的抽运光与信号光的相位差。

从(6)式和(7)式可以看出,经再生器后输出信 号的光功率不仅与信号光和抽运光的光功率有关,还 取决于两者的输入相位差。因此,可以通过选取适当 的入射光功率、抽运光功率以及入射光与抽运光的相 位差,使得输出光功率最大,以实现信号再生的目的。

3 数值仿真及结果

利用 Matlab 进行数值仿真,以实现对入射到再 生器的光参数的优化。考虑到 SOA 的饱和增益特 性,对于 $P_{\text{SAT}} = 1$ mW 的 SOA,选择输入的抽运光 功率 $P_{LO} = 0.5 \text{ mW}$;结合实际的 SOA 的长度,此处 选取L=0.5 mm,考虑入射光功率分别为 0.04, 0.06,0.08,0.1,0.12 和 0.16 mW 情况下,再生器 功率增益随入射光与抽运光的输入相位差的变化关 系,如图2所示。可以看出,对不同入射光功率,功 率增益随输入相位差的变化是不同的,随着入射光 功率的增大,增益饱和效应越来越明显;对于入射光 功率在 0.1 mW 左右时,虽然功率增益不是最大,但

对于一定范围内的输入相位差却是比较平坦的,这 对于以后的实验实现是很有利的,因此把最佳入射 信号光功率定为 0.1 mW,最佳相位差选取平坦区 域的中心位置,即 $\delta=0.4\pi$ 。

下面通过数值仿真验证再生器的再生效果。采 用一个简单的模型来量化加在 DPSK 信号中的噪 声,添加噪声后的方程如下

 $E_{after} = E_{before}(1 + N_A) \exp(iN_P)$, (8) 式中 N_A 为附加的振幅噪声的比例, N_P 为相位噪 声。令带有噪声的信号通过前面设计的再生器, 比 较再生前后振幅与相位分布以及接收机输出电流的 柱状统计分布, 分别如图3和图4所示, 其中 N_A =

报

图 3 振幅与相位分布的极坐标图。(a)再生前和(b)再生后

Fig. 3 Phasor diagram of DPSK data. (a) Before regeneration and (b) after regeneration

图 4 平衡接收机输出电流的柱状统计分布图。(a)再生前和(b)再生后 Fig. 4 Received data I_{diff} after balanced receiver of DPSK. (a) Before regeneration and (b) after regeneration

可以看出,再生后的信号相位差基本集中在 0 和 π 附近,平衡接收机输出电流也相对集中。同时 数值仿真了不同光信噪比(OSNR)相同相位噪声下 再生前后的误码率(BER)以及相同光信噪比不同相 位噪声下再生前后的误码率,如图 5 所示,再生后误 码率都达到了光通信误码率低于 10⁻¹²的要求,甚至 接近 0 误码,可见再生效果良好。

图 5 再生前后误码率比较。(a)相位噪声一定,不同信噪比和(b)信噪比一定,不同相位噪声 Fig. 5 Comparison of BER between before and after regeneration (a) phase noise will, different SNR and (b) SNR must, different phase noise

4 结 论

利用 SOA 的增益特性,设计了基于 SOA 的马赫-曾德尔干涉仪型再生器,该再生器结构简单,相 比于高非线性光纤干涉仪型相位敏感放大器更易于 实现集成化;理论推导了再生器再生后的光场分布, 并通过数值仿真得到了入射光的最优参数,为相位 再生器的实验实现,提供了切实可行的参考数据,抽 运光和信号光的相位差在实验上可以通过锁相器实 现,入射信号光和抽运光功率的控制可以通过可调 谐衰减器来实现;仿真实验证实再生效果良好,误码 率基本上接近0误码。

参考文献

- Shao Yufeng, Li Jia, Cheng Lili *et al.*. Four serial differential phase-shift keying modulation formats for 100 Gbit/s tansmission aplications [J]. *Chinese J. Lasers*, 2009, **36**(3): 574~580 邵字丰,李 佳,程黎黎等.四种级联差分相位调制码的 100 Gbit/s 传输[J]. 中国激光, 2009, **36**(3):574~580
- 2 Qin Xi, Chen Yong, Cao Jihong *et al.*. Influence of dispersion compensation schemes on phase noise of phase modulation systems [J]. *Chinese J. Lasers*, 2007, **34**(1): 64~68 秦 曦,陈 勇,曹继红 等. 色散补偿方式对相位调制系统中相位噪声的影响 [J]. 中国激光, 2007, **34**(1): 64~68

- 3 H. Kim, A. H. Gnauck. Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise[J]. *IEEE Photon. Technol. Lett.*, 2003, 15(2): 320~ 322
- 4 S. L. Jansen, D. van den Borne, G. D. Khoe *et al.*. Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system [C]. *Proc. OFC*2005, Th05, Anaheim CA
- 5 A. Striegler, B. Schmauss. All-optical DPSK signal regeneration based on cross-phase modulation [J]. *IEEE Photon. Technol. Lett.*, 2004, **16**(4): 1083~1085
- 6 Tang Xianfeng, Zhang Xiaoguang, Xi Lixia. Analysis of phase regeneration of DPSK/DQPSK signals based on phase-sensitive amplification [J]. Chin. Opt. Lett., 2009, 7(5): 380~383
- 7 A. Striegler, M. Meissner, K. Cvecek *et al.*. NOLM-based RZ-DPSK signal regeneration [J]. *IEEE Photon. Technol. Lett.*, 2005, **17**(3): 639~641
- 8 K. Croussore, C. Kim, G. Li. All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification [J]. Opt. Lett., 2004, 29(20): 2357~2359
- 9 K. Croussore, I. Kim, Y. Han *et al.*. Demonstration of phaseregeneration of DPSK signals based on phase-sensitive amplification [J]. *Opt. Express*, 2005, **13**(11): 3945~3950
- 10 Wei Yanfen, Zhang Xia, Xu Yongzhao et al.. All-optical regeneration based on highly nonlinear microstructured fiber [J]. Acta Optica Sinica, 2007, 27(3): 414~418
 卫艳芬,张 霞,徐永钊等. 基于高非线性微结构光纤的全光再 牛研究[J]. 光学学报, 2007, 27(3): 414~418